Self-Assembly and Characterization of Supramolecular [60]Fullerene-Containing 2,6-Diacylamidopyridine with Uracil Derivative by Hydrogen-Bonding Interaction

Zhiqiang Shi, Yuliang Li,* Haofei Gong, Minghua Liu, Shengxiong Xiao, Huibiao Liu, Hongmei Li, Shengqiang Xiao, and Daoben Zhu

Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China

ylli@infoc3.icas.ac.cn

Received January 24, 2002

2002 Vol. 4, No. 7 ¹¹⁷⁹-**¹¹⁸²**

ABSTRACT

Novel self-assembly systems of uracil derivatives with organofullerene by a three-point hydrogen-bonding interaction were designed and established. The formation of hydrogen bonding was established by ¹ H NMR studies in CDCl3.

There has been an increasing interest in design and selfassembly of fullerene derivatives by hydrogen bonds into one-, two-, and three-dimensional supramolecular architecture as a result of their potential applications as new photoelectric materials. Hydrogen bonds are essential for molecular recognition and self-organization of molecules in supramolecular chemistry and have been used for the design of various molecular aggregates in solid state or in solution. $1-5$ Meanwhile, energy and electron-transfer processes have also been investigated in the assembled supramolecular systems through hydrogen bonds.^{2,3} Very recently, Guldi⁶ and Hummelen7 reported, respectively, the synthesis and photophysical properties of the first quadruple hydrogen bonded fullerene dimer.

We sought to develop a complementary strategy for the synthesis of a donor system and an acceptor unit containing [60]fullerene that would form a class of supramolecular systems that were structurally different from previously reported ones. Here we report the synthesis of new organofullerenes containing a 2,6-diacylamidopyridine unit and self-assembly with a compound bearing the uracil moiety to form a hydrogen-bonded supramolecular system (Scheme 1). The donor and acceptor are linked by a three-point hydrogen

⁽¹⁾ Brienne, M. J.; Gabard, J.; Lehn, J. M.; Stibor, I. *J. Chem. Soc., Chem. Commun*. **1989**, 1868.

⁽²⁾ Berg, A.; Shuali, Z.; Someda, M. A.; Levanon, H. *J. Am. Chem. Soc*. **1999**, *121*, 7433.

⁽³⁾ Sessler, J. L.; Brown, C. T.; O'Connor, D.; Springs, S. L.; Wang, R.; Sathiosatham, M.; Hirose, T. *J. Org. Chem*. **1998**, *63*, 7370.

⁽⁴⁾ Archer, E. A.; Goldberg, N. T.; Lynch, V.; Krische, M. J. *J. Am. Chem. Soc*. **2000**, *122*, 5006.

⁽⁵⁾ Rebeck, J. *J. Chem. Soc. Re*V. **¹⁹⁹⁶**, *²⁵*, 255.

⁽⁶⁾ González, J. J.; González, S.; Priego, E. M.; Luo, C.; Guldi, D. M.; Mendoza, J.; Martin, N. *Chem. Commun*. **2001**, 163.

⁽⁷⁾ Rispens, M. T.; Sa´nchez, L.; Knol, J.; Hummelen, J. C. *Chem. Commun*. **2001**, 161.

^a (i) Thionyl chloride, 90°, 90%; (ii) 2,6-diaminopyridine, THF, rt, 18 h, 94%; (iii) chloroacetanoyl chloride, THF, rt, 24 h, 82%; (iv) sodium azide, 10% water/ethanol, reflux, 24 h, 94%; (v) C_{60} , chlorobenzene, reflux, 72 h, 21%; (vi) 1-bromoundecane, DMSO, 40°, 24 h, 70%.

bond. The formation of hydrogen bonds between the uracil and 2,6-diaminopyridine groups has proved to be an efficient way to construct a supramolecular assembly.^{2,6}

The synthesis of the organofullerene DAP-C60 (**1**) is sketched in Scheme 1. The 2,6-diaminopyridine was monoamidated with lauroyl chloride, and then 2-amino-6-lauroylaminopyridine8 was further amidated with chloroacetanoyl chloride to afford 2-chloroacetanoylamino-6-lauroylaminopyridine.⁹ Nucleophilic substitution of chloride with sodium azide yielded 2-azidoacetanoylamino-6-lauroylaminopyridine.¹⁰ The DAP-C60¹¹ was prepared by reaction of 2-azidoacetanoylamino-6-lauroylaminopyridine with 1 equiv of C_{60} in chlorobenzene under reflux, which relied on the cycloaddition reaction of the azide group with C_{60} , pioneered by the Wudl group.12 This methodology has proven to be a simple and versatile method for synthesis of C_{60} dyads systems. The condensation product **2**¹³ of uracil and 1-bromoundecane was obtained at ambient temperature. It is expected that the introduction of long alkyl chain in **1** and **2** exceedingly enhances the solubility of the compounds in organic solvents.

The addition of azides to C_{60} in this reaction proceeds via intermediate triazolines, which rearrange to closed 1,2-azabridged isomers as the major monoaddition product after extrusion of N_2 . With high symmetry, the closed 1,2-azabridged isomer keeps the framework of C_{60} well also, which can be confirmed by the ${}^{13}C$ NMR spectrum. Except for two sp³-C peaks that appear at δ 83.22 ppm, all other sp²-C peaks of C_{60} appear at a closed region of δ 149-140 ppm (Figure 1).

Figure 1. The 13C NMR spectrum of compound **1**.

Our evidence for the formation of hydrogen bonding selfassembly came from ¹ H NMR spectroscopic studies. It is well-known that the characteristic of the formation of a threepoint hydrogen bonding complex between the uracil and 2,6 diaminopyridine groups is the downfield shifts for their amidic protons.1,5 Upon complexation of compound **2** by compound **1**, the imide proton signal undergoes a significant downfield shift of several ppm in the NMR titration experiment since the electron densities of the protons involved in H-bonds are decreased and consequently their NMR signals are shifted to lower magnetic fields.14,15 The association constant of this three-point hydrogen bond is in a range of $300-600$ $M^{-1.5}$ The interaction of **1** with
compound **2** was investigated by ¹H NMR spectroscopic compound **2** was investigated by ¹ H NMR spectroscopic titrations carried out in chloroform-*d*. For the ¹ H NMR studies, the concentration of the host was kept constant (3 mM) and the change in the chemical shift was followed as

⁽⁸⁾ Select data for 2-amino-6-lauroylaminopyridine: 1H NMR (CDCl3, ppm) *δ* 0.79 (t, *J* = 6.6 Hz, 3H), 1.16 (m, 16H), 1.60 (m, 2H). 2.32 (t, *J* = 7.5 Hz, 2H), 5.42 (bs, 2H, NH₂), 6.30 (d, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 1 7.5 Hz, 2H), 5.42 (bs, 2H, NH₂), 6.30 (d, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 7.7 Hz, 1H), 8.77 (bs, 1H); ¹³C NMR (CDCl₃, ppm) δ 172.5 155 1 147.7 142.0 104.6 102.5 37.7 31.9 29.6 29.5 ppm) *δ* 172.5, 155.1, 147.7, 142.0, 104.6, 102.5, 37.7, 31.9, 29.6, 29.5, 29.3, 29.2, 25.2, 22.7, 14.1; EI-MS 291 (M+).

⁽⁹⁾ Select data for 2-chloroacetanoylamino-6-lauroylaminopyridine: 1H NMR (CDCl₃, ppm) *δ* 0.90 (t, *J* = 6.6 Hz, 3H), 1.24 (m, 16H), 1.73 (m, 2H) 2.40 (t, *J* = 7.5 Hz, 2H), 4.21 (s, 2H), 7.85 2H). 2.40 (t, *J* = 7.5 Hz, 2H), 4.21 (s, 2H), 7.78 (t, *J* = 7.7 Hz, 1H), 7.85
(d, *J* = 7.7 Hz, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 8.83 (bs, 2H); ¹³C, NMR (d, $J = 7.7$ Hz, 1H), 7.97 (d, $J = 7.7$ Hz, 1H), 8.83 (bs, 2H); ¹³C NMR (CDCl3, ppm) *δ* 171.3, 164.1, 148.3, 146.6, 140.2, 109.2, 108.1, 44.8, 41.7, 36.7, 30.9, 28.6, 28.4, 28.3, 28.1, 24.2, 21.6, 13.1; EI-MS 367 (M+).

⁽¹⁰⁾ Select data for 2-azidoacetanoylamino-6-lauroylaminopyridine:1H NMR (CDCl₃, ppm) *δ* 0.91(t, *J* = 6.6 Hz, 3H), 1.25 (m, 16H), 1.72 (m, 2H). 2.38 (t, *J* = 7.5 Hz, 2H), 4.16 (s, 2H), 7.64 (bs, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 8.39 (bs, 1H); Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 8.39 (bs, 1H); ¹³C NMR (CDCl₃, ppm) *δ* 169.9, 163.1, 147.7, 146.3, 139.2, 108.3, 107.5, 51.0, 35.9, 30.0, 27.7, 27.5, 27.4, 27.3, 27.1, 23.4, 23.2, 20.8, 12.2; EI-MS 346 (M $-$ 28).

⁽¹¹⁾ Select data for compound **1**: ¹H NMR (CDCl₃, ppm) *δ* 0.87 (t, *J* = 6.5 Hz, 3H), 1.25 (m, 16H), 1.74 (m, 2H). 2.44 (t, *J* = 7.4 Hz, 2H), 4.59 6.5 Hz, 3H), 1.25 (m, 16H), 1.74 (m, 2H). 2.44 (t, *J* = 7.4 Hz, 2H), 4.59 (s, 2H), 7.84 (m, 1H), 8.03 (m, 2H), 9.86 (bs, 2H); ¹³C NMR (CDCl₃, ppm) *δ* 170.5, 164.3, 145.3, 144.9, 144.8, 144.6, 143.8, 143.2, 142.9, 142.1, 141.6, 106.6, 105.8, 83.3, 37.8, 31.9, 29.7, 29.6, 29.5, 29.4, 29.4, 29.3, 29.2, 25.3, 22.7, 14.2; MS 1067 (M + 1).

⁽¹²⁾ Prato, M.; Li, Q.; Wudl, F.; Lucchini, V. *J. Am. Chem. Soc*. **1993**, *115*, 1148.

⁽¹³⁾ Select data for compound **2**: 1H NMR (CDCl3, ppm) *δ* 0.88 (t, 6 Hz, 3H), 1.26 (m, 16H), 1.68 (m, 4H), 3.72 (t, 7.4 Hz 2H), 5.70 (d, 8.2 Hz, 1H), 7.14 (d, 8.2 Hz, 1H), 9.11 (bs, 1H); 13C NMR (CDCl3, ppm) *δ* 163.9, 150.9, 144.5, 102.1, 48.9, 31.9, 29.6 (2C), 29.5, 29.4, 29.3, 29.52, 29.1, 26.4, 22.7, 14.1; FAB-MS 281 (M + 1).

⁽¹⁴⁾ Schuster, P.; Zundel, G.; Sandorfy, C. *The Hydrogen Bond: Recent De*V*elopments in Theory and Experiments*; North-Holland: Amsterdam, 1976; Vols. 1-3.

⁽¹⁵⁾ Konrat, R.; Tollinger, M.; Kontaxis, G.; Kraufler, B. *Monatsh. Chem*. **1999**, *130*, 961.

a function of increasing guest concentration. The NMR titration experiments reveal a significant downfield shift of the amidic proton signal due to melamine complexation (Figure 2). Therefore, hydrogen-bond-mediated complex

Figure 2. Partial ¹H NMR spectra of $1-2$ supramolecular systems in different concentration ratio in $CDCl₃$ at room temperature.

formation could be unambiguously demonstrated in chloroform. Specifically, as illustrated in Figure 3, analysis of the

Figure 3. ¹H NMR binding isotherm for **1** with **2** in CDCl₃ at room temperature. The concentration of **1** was kept constant at 3 mmol/L.

downfield shift for the amidic proton as a function of increasing concentration of **1** provided support for a 1:1 binding model and yielded an association constant of K_a = 323 ± 45 M⁻¹.¹⁶ This result showed that hydrogen bonding
took place between 1 and 2, and these assembly motifs took place between **1** and **2**, and these assembly motifs exhibit a significantly high stability.

As shown in the UV -vis spectra (Figure 4), the formation of the **¹**-**²** supramolecular system lead to an obvious blue shift of compound **2** by 7 nm in chloroform. This change of the small molecule **2** in electronic transition cannot be explained by the formation of hydrogen bonds alone but suggests additional contributions resulting from the influence of the redox-active chromophore of C_{60} through the hydrogen bonds.

Figure 4. The absorption spectra of the $1-2$ system in chloroform.

Considering the self-assembling behavior of **1** with **2** in organic solvents, it can be assumed that they will construct three-dimensional superstructures that are stabilized by intermolecular hydrogen bonding through uracil group and 2,6-diaminopyridine moiety and chain interaction. In fact, the self-assembled balls of **1** with **2** could be observed in field emission scanning electron microscopy (FESEM) images. Figure 4 shows the FESEM and the size distribution histograms of the assemblies result from the solutions of the **1–2** system in chloroform/hexane $(10^{-5}$ M).

The assemblies formed are in the range of $20-115$ nm (the average size is 45 nm) for the $1-2$ system. The size

Figure 5. FESEM image and size distribution histogram of assemblies resulting from 10^{-5} M $1-2$ in chloroform/hexane.

⁽¹⁶⁾ Kra´l, V.; Furuta, H.; Shreder, K.; Lynch, V.; Sessler, J. L. *J. Am. Chem. Soc*. **1996**, *118*, 1595.

distribution is broad, showing strong structure factors corresponding to the stacking of forming hydrogen-bonddirected arrangement of **1** with **2**. From the fact that the diameter of the smallest ball in Figure 5 is about 20 nm, we presume that the superstructures of the ballslike assemblies are constructed from the numerous molecules of **1** with **2** by intermolecular hydrogen bonding and $\pi-\pi$ interaction.

In conclusion, the self-assembly of the hydrogen-bonded ball-like structure of a uracil derivative with organofullerene can be used to design new supramolecular systems based

on [60]fullerene. The possibility of producing a well-defined supramolecular structure like the ball presented here could be of interest for the construction of three-dimensional nanomaterials for future applications as photoelectric devices.

Acknowledgment. This work was supported by the Major State Basic Research Development Program and the National Natural Science Foundation of China (20151002, 90101025). OL025614I